用于医学图像重建的深度神经网络传统上使用高质量的地基图像作为训练目标训练。最近关于噪声的工作(N2N)已经示出了使用与具有地面真理的多个噪声测量的潜力。然而,现有的基于N2N的方法不适合于从经历非身份变形的物体的测量来学习。本文通过补偿对象变形来提出用于训练深层重建网络的变形补偿学习(DecoLearn)方法来解决此问题。DecoLearn的一个关键组件是一个深度登记模块,它与深度重建网络共同培训,没有任何地理监督。我们在模拟和实验收集的磁共振成像(MRI)数据上验证了甲板,并表明它显着提高了成像质量。
translated by 谷歌翻译
联合学习可以使许多应用程序受益于大量潜在数据持有客户的分布式和私人数据集。但是,不同客户通常就可以从数据中学到的任务具有自己的特定目标。因此,使用元学习工具(例如多任务学习和转移学习)来支持联合学习,将通过让不同但相关任务的客户共享可以进一步更新和更新和相关任务的客户来帮助扩大联合学习的潜在应用程序。由每个客户为其特定任务量身定制。在联合的多任务学习问题中,应对每个客户的各个目标进行训练的深度神经网络模型,同时共享一些参数以提高概括性。我们建议训练一个深层的神经网络模型,其更广泛的层更接近输入,并且更具个性化的层贴在输出中。我们通过引入层类型(例如预训练,常见,特定于任务和个人层)来实现这一目标。我们提供仿真结果,以突出特定的方案,在这种情况下,基于元学习的联合学习被证明是有用的。
translated by 谷歌翻译
本文建议使用通信管道来提高移动边缘计算应用程序中联合学习的无线频谱利用效率和收敛速度。由于无线子渠道有限,在联合学习算法的每次迭代中,总计客户端的一部分。另一方面,计划的客户等待最慢的客户端完成计算。我们建议首先根据客户在计算联合学习模型的本地梯度所需的时间将客户聚集。然后,我们安排了来自所有群集的客户的混合,以管道的方式发送其本地更新。这样,更多的客户可以参与每次迭代,而不仅仅是等待较慢的客户完成计算的速度。虽然单个迭代的持续时间没有改变,但提出的方法可以显着减少达到目标准确性所需的迭代次数。我们为在不同的设置下提供了最佳客户群聚类的通用公式,并在分析上得出了一种有效的算法来获得最佳解决方案。我们还提供了数值结果,以证明针对不同数据集和深度学习体系结构所提出的方法的收益。
translated by 谷歌翻译